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Optimization methods that use gradients require initial estimates of the 
Hessian or second derivative matrix; the more accurate the estimate, the more 
rapid the convergence. For geometry optimization, an approximate Hessian 
or force constant matrix is constructed from a simple valence force field that 
takes into account the inherent connectivity and flexibility of the molecule. 
Empirical rules are used to estimate the diagonal force constants for a set of 
redundant internal coordinates consisting of all stretches, bends, torsions and 
out-of-plane deformations involving bonded atoms. The force constants are 
transformed from the redundant internal coordinates to Cartesian coordinates, 
and then from Cartesian coordinates to the non-redundant internal coordin- 
ates used in the specification of the geometry and optimization. This method 
is especially suitable for cyclic molecules. Problems associated with the choice 
of internal coordinates for geometry optimization are also discussed. 
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I. Introduction 

The analytical calculation of the energy gradient has greatly improved the 
efficiency and reliability of geometry optimizations with ab initio and semiem- 
pirical molecular orbital methods [1-3]. The equilibrium geometry of a molecule 
with N degrees of freedom can be found in ca. N steps using any of a family 
of gradient-type optimization methods [4, 5] such as conjugate gradient, quasi- 
Newton, variable metric, Murtagh-Sargent, etc. At the beginning of the optimiz- 
ation each of these methods requires an estimate of the Hessian (also called the 
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second derivative matrix or the force constant matrix). The estimate need not be 
very accurate since the Hessian matrix is updated during the search for the 
minimum, and gradually approaches the correct second derivative matrix. The 
overall efficiency of  the optimization, or the rate of convergence to the equilibrium 
geometry depends on the initial estimates of the Hessian as well as the starting 
geometry. Although the final optimized geometry is independent of the start 
geometry or Hessian, the closer these estimates are to the true second derivative 
matrix and the equilibrium geometry, the fewer steps will be required to complete 
the optimization. 

Two limiting cases can be considered for the initial estimate of the Hessian. The 
simplest and most frequently used estimate is the unit matrix. Although this is 
an unbiased choice, all the useful structural information about the molecule is 
discarded, i.e. the nature of the atoms, the bonds between them, etc. Flexible 
coordinates (i.e. torsion and ring deformation) are not distinguished from stiff 
modes (i.e. bond stretching) and all coupling between coordinates is ignored. 
Such information must be accumulated during the course of the optimization at 
the expense of  additional optimization steps. This is particularly detrimental for 
cyclic molecules whose coordinates are inherently strongly coupled. 

In the other extreme, the full second derivative matrix can be calculated analyti- 
cally [6]. If  the energy surface for the molecule is approximately quadratic only 
one step is required to reach the optimum geometry. However, in many cases it 
is not feasible or not desirable to calculate the full Hessian directly, since this 
requires ca. N times the effort of a gradient calculation. Clearly, an intermediate 
method of estimating the Hessian is needed that incorporates the chemically 
important features of  the molecule yet does not require a substantial computa- 
tional effort. 

The purpose of this paper is to outline a simple empirical procedure for estimating 
the Hessian that is especially suitable for cyclic molecules. In addition, some 
comments are made concerning the choice of  internal coordinates to improve 
the rate of  convergence of geometry optimization. 

2. Procedure 

Since the Hessian is the matrix of second derivatives of the energy surface with 
respect to the coordinates, its form will depend partly on the choice of coordinates 
being optimized. In principle, any non-redundant  coordinate system is acceptable. 
However conventional optimization techniques as well as gradient methods 
function best if the coordinates are not strongly coupled (i.e. no large interaction 
force constants or off-diagonal Hessian matrix elements). Redundant coordinates 
must be avoided since the gradient cannot be determined uniquely for such 
coordinate systems. Independent of the coordinate system used for the optimiz- 
ation, the Hessian also contains information about the connectivity of the 
molecule, the bond strengths, conformational flexibility, etc. The separation of 
the two contributions can be exploited in the estimation of the Hessian. 
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An estimate of the Hessian for an arbitrary set of non-redundant internal coordin- 
ate system can be obtained by: (a) determining a complete set of redundant 
valence coordinates from the Cartesian coordinates of the atoms, (b) estimating 
the force constants for these coordinates, (c) transforming the force constants to 
Cartesian coordinates, (d) transforming the force constants into the final set of 
non-redundant  internal coordinates used in the optimization. 

(a) Redundant  valence coordinates are commonly used in spectroscopy to 
describe molecular force fields [6]. These include bond stretch, valence angle 
bend, torsion about a bond, out-of-plane bend, and linear angle bend. Normally 
these are defined only for bonded atoms. Whether two atoms are bonded can be 
determined easily from the interatomic distances and a table of covalent radii. 
Thus a unique set of valence coordinates can be constructed readily from the 
Cartesian coordinates of the atoms. For clusters and loose complexes, some care 
must be taken to ensure that the coordinate system spans all degrees of freedom, 
and does not represent the complex as two disconnected fragments. The 
infinitesimal displacements of the valence coordinates, q', are related to the 
Cartesian displacements, x, by the appropriate B matrix of Wilson [7]: 

q'=B'x.  (1) 

(b) Force constants in valence coordinates can be estimated from a variety of 
empirical rules developed by spectroscopists. However, the methods chosen for 
the present application must be widely applicable and depend only on the atom 
types and the molecular geometry. For stretching force constants, Badger's rule 
[8] falls in this category: 

Fst r = A/ ( r  - B) 3 (2) 

where A and B are constants and r is the bond length. B depends only on the 
rows of the periodic table that the bonded atoms are in. Table 1 lists values for 
A and B calibrated to reproduce force constants for minimal and extended basis 
set ab initio calculations. An accuracy of ca. 10% is typical for H, C, N, O, F, 
Si, P, S and C1 compounds. 

For angle bends a similarly general rule is lacking. Since the bending force 
constants do not vary greatly, a single constant is used for all three heavy atom 
bond angles (see Table 1). A smaller value is used if either terminal atom is 
hydrogen. If more data becomes available through analytical force constant 
calculations, a larger selection of values may be warranted. Dependence on the 
lengths of the bonds forming the angles could also be incorporated if necessary, 
via a bond-order/bond-energy expression [9]. 

The force constant for torsion about a double bond can be an order of magnitude 
larger than for torsion about a single bond. The following formula is used to 
take this into account crudely: 

Fto~=A-B(r -rr  r<rr (3) 
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Table 1. Empirical force constants used to estimate the 
Hessian for ab initio geometry optimizations 

Parameters for force constants a 

Bond Stretch ( F s t  r = A / ( r -  B) 3) 
A=  1.734 b 
B =-0.244 (1 st period--1 ~t period) c 

0.352 (1 st period--2 nd period) 
1.085 (2 nd period--2 nd period) 
0.660 (1 st period--3 ra period) 
1.522 (2 nd period--3 ra period) 
2.068 (3 ra period--3 ~ period) 

Angle Bend (Fbend = A) 
A = 0.160 b (either or both terminal atoms hydrogen) 
A = 0.250 b (all three heavy atom bends) 

Torsion (Ftors = A - B~r - rcov) ) 
A = 0.0023 b B = 0.07 b 

Out-of-Plane (Foo p = Ad4)) 
A = 0.045 b 

a Force constants in hartree/bohr 2 or hartree/rad 2, bond 
lengths in bohr. Only force constants between bonded atoms 
are defined. Atoms are considered bonded if their 
internuclear distance is less than 1.35 times the sum of the 
covalent radii. The covalent radii use for the first 36 atoms are: 
0.32, 0.60, 1.2, 1.05, 0.81, 0.77, 2*.74, 2*.72, 1.5, 1.4, 1.3, 1.17, 
1.10, 1.04, 2*.99, 1.8, 1.6, 11"1.4, 1.3, 2"1.2, 2*l.IA. 
b Multiply by 1.3 for minimal basis set calculations. 
c I.e. H-H 

where  r is the  l e n g t h  o f  the  cen t ra l  b o n d  a n d  roov is the  l eng th  o f  the  c o r r e s p o n d i n g  
s ing le  b o n d  (i.e. s u m  o f  the  c o v a l e n t  radi i ) .  S ince  a d i h e d r a l  ang l e  or  t o r s i ona l  

c o o r d i n a t e  is de f ined  for  each  d i s t inc t  p a i r  o f  a toms  b o n d e d  to o p p o s i t e  ends  o f  
a c en t r a l  b o n d ,  C2H4 a n d  C2H 6 have  4 a n d  9 t o r s i o n a l  c o o r d i n a t e s ,  respect ively .  

Fo r  p l a n a r  m o l e c u l e s ,  o u t - o f - p l a n e  b e n d i n g  c o o r d i n a t e s  m u s t  be  c o n s i d e r e d  in  
a d d i t i o n  to v a l e n c e  a n g l e  b e n d s .  H o w e v e r ,  as the  m o l e c u l e  is m a d e  p y r a m i d a l ,  
the  force  f ield is bes t  d e s c r i b ed  by  v a l e n c e  ang les  a lone .  T h u s  the  o u t - o f - p l a n e  
force  c o n s t a n t  is s t rong ly  a t t e n u a t e d  b y  a f u n c t i o n  o f  the  n o n - p l a n a r i t y  

F o o p = a d 4 ;  d = l - r , -  r a •  llr21r3l (4) 

whe re  rl ,  r2, a n d  r3 are  vec tors  p o i n t i n g  a l o n g  the  th ree  b o n d s  a s soc ia t ed  wi th  
the  o u t - o f - p l a n e  angle .  N o t e  tha t  0 -< d -< 1 a n d  tha t  d = 1 for  a p l a n a r  center .  A n  
o u t - o f - p l a n e  c o o r d i n a t e  is de f ined  for  each  d i s t i nc t  set o f  th ree  a tom s  b o n d e d  to 
a cen t ra l  a tom.  

T h e  e x p r e s s i o n s  for  the  d i a g o n a l  v a l e n c e  force  c o n s t a n t s  are  suff ic ient  to a c c o u n t  
for  the  c o n n e c t i v i t y  a n d  the  f lexibi l i ty  o f  the  mo lecu l e .  Because  o f  the  r e d u n d a n c y  
in  the  v a l e n c e  c o o r d i n a t e s  (i.e. 6 b o n d s  a n d  6 ang les  in  a p l a n a r  r i ng ;  6 b e n d s  
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for a tetrahedral center; etc.), they also describe the most important coupling 
between the nonredundant  coordinates used in the optimization (i.e. 5 bonds 
and 4 angles for the ring; 5 bends for tetrahedral coordination). For a simple 
valence force field, only the diagonal elements are non-zero. Additional coupling 
can be introduced by estimating some of the off-diagonal terms. The most 
important couplings are stretch-stretch and stretch-bend interactions. For two 
stretches sharing a common atom, -0.1 mdyn/A is typical. For a stretch and a 
bend sharing a common bond, -0.5 mdyn/A is an average value. Interaction 
force constants have not been included in the current implementation. 

(c) Transformation of the force constants from valence coordinates to Cartesian 
space can be accomplished with the B' matrix appropriate for the valence 
coordinates, 

F cart = B'FVa~B 'r. (5) 

This transformation is especially simple if F va~ is diagonal, since B' does not 
have to be stored. 

(d) Once the force constant matrix is in Cartesian coordinates, it can be trans- 
formed to any non-redundant coordinate system. Typically the coordinates used 
to construct the molecule and to perform the optimization contain bond lengths, 
bond angles and dihedral angles. In addition to the actual atoms in the molecule, 
dummy atoms may be used to assist in describing the molecule or optimizing the 
geometry. The infinitesimal displacements of these non-redundant internal co- 
ordinates, q, can be written in terms of a Wilson B matrix and the Cartesian 
displacements. Note that this B matrix is different than B' used to convert from 
the redundant valence coordinates. 

q = B x .  (6) 

Transformation of the forces and the force constants requires the inverse of  B: 

B-1 = ( B T M B ) - l B T M  

B - l q  = x. (7) 

The auxiliary matrix M depends on the conventions used for constructing the 
Cartesian coordinates from the bond lengths and angles. For the algorithm 
employed in the GAUSSIAN series of programs [10], M is a unit matrix with 
additional zeros on the diagonal for Mll,  M22, M33, M44, M55 and M88. These 
correspond to the Cartesian coordinates that are arbitrarily fixed (i.e. atom 1 is 
placed at the origin, atom 2 on the z axis and atom 3 in the xz plane). 

The forces, f, and the force constants, F, are transformed according to: 

fint= B-lfcari (8) 

F int  = B-IFcart(n-l)T -4- ( d B - I / d q ) f  ca~t. (9) 

The Cartesian forces and force constants that correspond to the derivatives with 
respect to the Cartesian coordinates of  the dummy atoms are zero, since the 
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energy depends on the positions of only the real atoms. However, the internal 
forces and force constants for parameters involving dummy atoms are in general 
non-zero, because changes in these parameters can change the positions of the 
real atoms. 

The second term in Eq. (9) arises from the curvilinear nature of the internal 
coordinate system. As in Eq. (2), this term is ignored because the force constant 
matrix is only approximate. However, if F cart is calculated by analytical differenti- 
ation of  the energy [6] (e.g. frequency calculations), this term must be taken into 
account (in the GAUSSIAN system dB-~/dq is determined by numerical differ- 
entiation). 

3. Discussion 

In the algorithm outlined above, a simple valence force field is used to estimate 
the Hessian. There are a variety of other, more sophisticated methods used to 
represent force fields in spectroscopy [7], e.g. general valence force field, Urey- 
Bradley, etc. Usually these require a larger number of parameters and often must 
treat each new molecule as a special case. An alternate approach is to obtain a 
potential energy surface from a molecular mechanics program, such as MM2 
[11] or BIGSTRAIN [12]. However, these rr~ethods are parameterized only for a 
limited set of interactions, and deal with the inherently more difficult problem 
of reproducing energies and geometries as well as force constants. If more 
accuracy is required than a simple force field can provide, an estimated Hessian 
for an ab initio geometry optimization can be obtained from second derivatives 
computed using semiempirical methods or smaller basis set ab initio calculations. 

Even though the interactions between coordinates can be estimated, optimization 
methods work best if coordinate systems are chosen to reduce the coupling as 
much as possible. Several examples of  different coordinate systems are shown in 
Fig. 1. The a toms  in a planar 6 membered ring can be specified with 5 bond 
lengths and 4 angles. A change in any one of  the angles will have a large effect 
on the ring closing bond. An alternate representation, II, reduces the strong 
coupling by letting each angle move only one atom rather than a chain of atoms. 
Another situation that mixes bond stretch with angle bend is indicated in III. If  
the transition state is specified by IV (distance to the H2 midpoint, H2 bond 
length and 2 angles specifying the orientation), the relation between the coordin- 
ates is much simpler. In both of these examples, a flexible coordinate, e.g. angle 
bend, was coupled to a stiff mode, bond stretch. A similar situation can occur 
with torsional modes coupled to angle bends. In N-chloromethylamine,  the amino 
group can be specified by two dihedral angles, V. If  the amino group rotates 
during an optimization, both angles must be changed synchronously. A better 
representation would separate the rotation and inversion coordinates, as in VI. 
The reader can no doubt think of many other examples. 

A flexible mode coupled to a stiff mode corresponds to a long narrow valley 
running diagonally across the energy surface. In pathological cases, the valley is 
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Fig. 1. Internal coordinates for geometry 
optimization of a planar 6 membered ring (I H I-J H H 
and II), H2+CO transition structure (III and ~ C  ~ C  
IV), and internal rotation-inversion in [ [ 
CH3NCH1 (V and VI). In each case, the second H H 
choice represents less coupling among the inter- 
nal coordinates and should be less difficult to 
optimize V 

also curved. All gradient optimization methods will have a difficult time finding 
the minimum in this situation, since they will oscillate between the steep walls 
and make little progress along the valley floor. Such behavior is also seen in the 
solution of certain differential equations [13] (termed "stiff"). The best approach 
is to avoid or reduce the coupling by transforming to a new coordinatesystem. 
Additional areas that optimization methods that are known to have difficulties 
include in large shallow basisns, such as those occurring in loose clusters and 
van der Waals complexes. Estimation of the Hessian near saddle points or 
transition states is also an unresolved problem. 
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